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We investigate self-averaging properties in the transport of particles through random media. We show
rigorously that in the subdiffusive anomalous regime, transport coefficients are not self-averaging quantities.
These quantities are exactly calculated in the case of directed random walks. In the case of general symmetric
random walks a perturbative analysis around the effective medium approximation is performed.

PACS number(s): 05.40.+j, 05.60.+w

The analysis of transport of particles in random media has
interest for physical systems since the transport mechanism
is the basis of many physical phenomena [1-4]. The effect
of disorder in the behavior of such systems can be normal, if
only a quantitative change of the transport parameters oc-
curs, or anomalous when a qualitative change is induced by
the disorder. This anomalous behavior is of great interest in
the physics of disordered media and has been observed in
almost all kind of physical phenomena, from electrical con-
ductivity to thermal properties [2—4]. There is no general
theory for anomalous transport because in general the in-
volved phenomena are not unique. An important class of
anomalous behaviors are those due to restrictions in the mo-
tion of particles imposed by the disorder. If this restriction is
strong the motion of the particle is subdiffusive and, as a
consequence, anomalies in the observed phenomena occur.

An important characteristic associated with the anomalous
behavior is the sample to sample dependence of the mea-
sured quantities. Strong sample to sample fluctuations are
observed in most cases of anomalous behavior [4]. In a nor-
mal situation the transport coefficients are usually sample
independent, while for strong disorder transport coefficients
are supposed not to be self-averaging quantities. The exist-
ence of sample to sample fluctuations is problematic either
from experimental or theoretical points of view. On the one
hand, experiments are usually performed over a few samples.
On the other hand, systematic analysis of disorder effects
have been usually based on the probability density of diffus-
ing particles averaged over random media configurations.
The study of systems without self-averaging properties im-
plies the calculation of averaged products of probabilities or
some equivalent function, which is a rather difficult task.
Only a few works have been devoted to the analysis of self-
averaging properties in special cases. In [5] a case of weak
disorder was investigated, while [6] and [7] deal with cases
of directed random walks. In recent works sample to sample
fluctuations of first passage times in asymmetric random
walks [8] have been investigated. Also, and related to sample
to sample fluctuations, there are some works dealing with
sample averaging of powers of the probability [9].

In this Rapid Communication we perform a systematic
analysis of the self-averaging properties of systems described
by random walks (RW’s) on regular lattices with a random
distribution of transition rates. We introduce a method based
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on the renormalization of some coefficients of the evolution
equations to obtain averaged products of probabilities. This
method generalizes the one previously used in [10] for the
calculation of single averaged probabilities. We apply the
method, which we believe to be of rather wide applicability,
to the general symmetric RW and to the directed RW in one
dimension. It is shown rigorously that for strong quenched
disorder the transport coefficients are not self-averaging.
We consider a general transport problem in which a par-
ticle moves in a lattice with random transition rates. The
position of the particle at a time ¢ is denoted by r(¢) and the
quantities of interest are mean functions of the position
F(r). Defining P(r,t) as the probability of finding the par-
ticle in r at time ¢, the observed quantities are given by

F(t)=2, F(r)P(r,1). (1)

r

In principle, these quantities are dependent on the particular
configuration of the medium. A complete description of these
quantities can be achieved by using averaged moments of the
form

<Fn(t)>: E F(rl)"'F(rn)<P(r17t)"'P(rn’t)>a

2)

where (- - -) indicates the average over all possible configu-
rations of the medium. The self-averaging character of F(¢)
can be derived from its variance. We analyze this character in
the asymptotic time regime of systems with infinite size. In
this case the self-averaging property is defined by means of
the magnitude of the fluctuations of the transport coefficients
in different realizations of disorder. A zero dispersion means
self-averaging of the corresponding coefficient. The same
definition has already been used in transport problems [6,7].
Other kinds of methods used in transport problems [5,4] and
spin glass theory [11] consider samples of finite size. Then
self-averaging properties are studied by taking the limit of
infinite size for different configurations.

The study of sample to sample fluctuations of the trans-
port coefficients can be achieved from the calculation of the
averaged products of probabilities. In the following we focus
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on this problem in a transport model with a probability gov-
erned by a master equation with random coefficients w, as

0P (r,t)=LoP+Lw,LgP, @A)

where Ly, L;, and Lg are linear operators. In a standard
transport model these operators are linear combinations of
shift operators, L(r)=23;a,E;(r), such that E,(r)P(r,t)
=P(r+i,t) and w, are random transition rates.

The starting point of our method is the introduction of an
effective medium with memory [10]. In this way (3) can be
written in terms of Laplace transforms as

sP(r,s)=Po(r)=[Lo+Ly¢(s,r)Lg]P(r,s)
+LL[M"r_ ¢(Sar)]LRP(ras)’ (4)

where Py(r) is the probability at t=0 and ¢(r,s) is the
transition probability of the effective medium that will be
determined below. Taking the integral form of (4) and iterat-
ing, a development in powers of the random transition rate
0,(r)=w,— ¢(s,r) is obtained [10]. Now we renormalize
6,(r) by performing a summation of all terms in which con-
tiguous indices take the same value [10], obtaining

P(ras):Gs(r’r’)PO(r,)

+2 D(ry) - P(r,)GE(r,ry)

n=1
XJ(ri,rp) - J(rn_q ,r,,)Gf(r,, ' )Po(r'),
(5)

where summation over repeated indices is understood and
the sum is restricted to terms with different contiguous indi-
ces. This renormalization corresponds to the one loop resum-
mation in diagrammatic representations, also known as
single site approximation in condensed matter. The renormal-
ized random transition rate is given by

o - L (6)
s(r)= 1—J,(r,r)0,(r)

and the functions GX® and J, are defined by

GR(r,r" Y =Lg(r)Gy(r,r"),GE(r,r" Y=L} (r")G(r,r'"),
)

J(r,r")=Lg(r)L}(r")G(r,r"), (8)

G (r,r') being the propagator of the deterministic part of
(4), Ly+L; ¢pLg . Finally, the transition probability ¢(r,s) is
defined by the effective medium approximation (EMA) con-
dition [10]: (®,(r))=0. When the model is translationally
invariant the propagator is only dependent on the difference
of site positions and the effective medium is homogeneous,
that is, ¢ is not dependent on the position.

The averaged products of probabilities can be directly cal-
culated from (5). These products are more conveniently ex-
pressed in terms of 6P(r,s), defined as the difference be-
tween the exact probability and that obtained with the
effective medium: SP(r,s)=P(r,s)— G (r,r')Py(r'). In

J. M. LOPEZ, M. A. RODRIGUEZ, AND L. PESQUERA 51

this way the averaged products of SP(r,t) are obtained from
(5) as series in moments of ® (r). Since self-averaging is
equivalent to a null dispersion, to analyze the self-averaging
character of the transport coefficients only (P(r,s)) and
(P(r,s)P(r',s)) must be considered. The method outlined
above can be used to obtain these quantities in a large variety
of problems. Here we consider the directed RW and the gen-
eral symmetric RW in one-dimensional (1D) media with
quenched disorder.

(a) Directed random walk (DRW) in 1D. In the DRW only
steps in one direction are allowed. Despite its simplicity sev-
eral phases or anomalous behaviors appear depending on the
intensity of disorder [6]. In one dimension the master equa-
tion modeling the DRW can be written as:

&IP(n’t)::—[1_E—l(n)]wnP(n9t)' (9)

The anomalous phases can be classified according to the in-
tensity of disorder, which is related to the existence of in-
verse moments of the random term w,. If we restrict our
analysis to the long time behavior of the velocity, only the
existence of the first inverse moment is relevant. Taking a
probability distribution p(w,)=(1—a)w, * the weak disor-
dered phase corresponds to the existence of the first inverse
moment (a@<0), and the strong disordered phase to
(w; Y=o (1>a>0). Other cases concerning transients
can be found in [6].

The application of the method to this case is straightfor-
ward. The propagator G ((n,m) is zero when n<<m and for
n=m we have

$(s)" ™

N PR T

(10)

Using the EMA condition we obtain the transition probabil-
ity of the effective medium ¢(s)=R™!(s)—s where the
function R(s)={((s+w) ) has been calculated in Ref. [6].
Since in the DRW only steps in one direction are possible,
only terms in (5) with ordered indices r{>r,>--->r, are
different from zero. Then ( SP(r,s))=0 and (P(r,s)) is ex-
actly given by the EMA. It is also possible to obtain exact
expressions for the averaged products of the moment gener-
ating function defined as F(x,s)=27_x'P(i,s). The facto-
rial moments f,(s) can be obtained by taking the derivative
of F(x,s) at x=1. All these quantities are sample dependent.
The averaged products of factorial moments can be calcu-
lated by means of averaged products of generating functions
as

IR '”(F(x,s)--'F(}’rs»
ox"- - gy™

(f()- - fml(s))=
x=...=y=1

11)

In general, any self-averaging property can be analyzed with
the knowledge of the averaged products of generating func-
tions. Let us consider as an example the analysis of the be-
havior of the factorial moments and assume the asymptotic
form f,(s)~a,s“, where a,, is in principle a sample depen-
dent quantity. The averaged value of a, and its dispersion
can be obtained from (F(x,s)) and from D(x,y,s)
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=([F(x,5) =(F(x,5))][F(y,5) = (F(y,s))]). From (5) we
obtain the exact expression of the averaged products of gen-
erating functions:

1

(F(x,s))= ST o) (1=x)" (12)

Dlxys)= 25 (1-x)(1-y)
YT s+ () P s+ (1—x) d(s) s+ (1—y) b(s)]

1

“H=A(my] (13)
where A()={p(s)[s+ P(s) 1> KD s+ dp(s)]~*
and the renormalized random transition is ®,=[s

+ @(s){[w—&(s)] /(w+s)}. From these expressions we
immediately have the calculation of moments and their
sample to sample dispersions. In the weak disordered phase,
after calculation of R(s) and (®2), one obtains a ballistic
behavior, (7(¢))~uvt, with a velocity v=(w~1)"1, thatis a
self-averaging quantity. In the strong disordered phase one
obtains, in agreement with [6,7], a subballistic behavior,
(F(1))~b t1~® with a coefficient with mean value (b)
=sin[m(1—a)] /[7(1—a)[(2— @)], that is not self-averaging.
The relative variance of b is a2(b) ={(b—(b))?) /(b)?
= a/(2— «). The dispersion increases [o,(b)— 1] for stron-
ger disorder (a—1).

(b) Symmetric random walk (SRW) in 1D. There are two
models of symmetric RW, the random trap (RT) and random
barrier (RB) models. The master equations corresponding to
both models are written in our formulation as

9 P(n,t)=[1—=E_1(n)]w,[E 1(n)—1]P(n,t) (14)
for the random barrier and

P(n,t)=[E_1(n)+E(n)=2]w,P(n,t)  (15)
for the random trap. The anomalous behavior induced by the
disorder is, in both cases, well known [1]. The different
phases can be classified following the definitions of [1]. We
recall that for model A (weak disorder) the inverse moments
of w,, By={((w,) M)y (M=1,2,...) are finite, while mod-
els B (marginal case, a@=0) and C (strong disorder,
0<a<1) are based on a probability distribution
piw))=(1—a)w,® [w,e(0,1)], such that inverse mo-
ments diverge. In all cases the long time behavior of the
sample averaged diffusion coefficient has been exactly cal-
culated. However, sample to sample fluctuations have not
been investigated until now. The sample averaged quantities
are the same for RT and RB in one dimension [10]. The same
results are also obtained from (5) for the self-averaging prop-
erties.

The application of the method to RB and RT models is
also straightforward, but it is not possible to obtain exact
expressions as in the DRW case. The propagator G (n,m)
and the functions J (n,m) are given in [10] for all kinds of
disorder. The transition probability of the effective medium
&(s) has also been calculated in [10] from the EMA condi-
tion. In this reference we obtained the exact asymptotic be-

havior of the averaged mean square displacement (x?(s)) in
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the frequency domain, which is directly related to the diffu-
sivity. The results derived from the EMA for each type of
disorder (A, B, and C) are given by

2 _ B2~ B3
x (S)EMA“SZBI 1+ oY (,315)2+0(s) (16)
1
o 4 In|In(s)
xz(s)EMAzszlln(s)l(l"' nl'lillsT '+O(|]ns|—l))’
17)
— 2/(2—a)
x*(8)Ema=2 % sBa—4)/(2-a)
+0(sBa—6)/(4-2a)y, (18)

The exact results can be expressed as corrections to the
results given by the EMA as

(x%(5))~x2(s) paal 1+ ()], (19)

where the first corrections are

1 2n
ay(s)= W(BZ_BI) s, (20)
1
(72 +161n2 —20)
aB(S): '——|m’2_'_‘ s (21)

ac(s)=(4In2—5+ 72/4) a*+ O(a’Ina). (22)

In the weak disordered case the behavior is normal and the
EMA reproduces exactly the first and second terms of (x2).
In the marginal case B the EMA is exact up to terms of order
smaller than |Ins|™3 [10]. In the strong disordered case the
behavior is subdiffusive and the EMA does not reproduce
exactly the coefficient of the leading term [10]. Expressions
(19)—(22) have been diagrammatically calculated in [10] by
using cumulants and projection operators. We can obtain the
same result from (5) in a much more simple way in terms of
moments and single functions. This simplicity allows us to
calculate more involved quantities and to analyze self-
averaging properties. For instance, to analyze the sample to
sample fluctuations of the generalized diffusion coefficient

32 .

we have calculated (x> “) which depends on the averaged
product of probabilities. As in the above case the exact result
can be expressed as corrections to the EMA result as

(x2(5))~x2() pal 1+ ¥(5)1, (23)

where the correction terms are

B (Ba— B,

Yo=7 S (24)
_ ! 25
7b~|1_ns_|’ (25)
Ye=a2+0(a?). (26)

These terms have been calculated from a diagrammatic rep-
resentation of the averaged products of (5). A detailed de-
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scription of this method will be presented elsewhere. Finally,
from (19) and (23) we can extract several conclusions. For
weak and strong disorder the dispersion of the particle can be

taken, in the long time limit, as x’~a 18%1+a,s*2, where the

coefficients are in principle sample dependent quantities. In
the weak disordered case the behavior is diffusive and we
have x?>~a;s~?+a,s~ ", where the first coefficient is self-
averaging but the second is sample dependent with a zero
mean value and a variance 02(a2)=Bl_7/2(32—,8%). In the
strong disordered case the behavior is subdiffusive,
x2~cys (#7302~ apd ¢, is not self-averaging. The mean
value of the coefficient ¢; can easily be calculated for small
a from (19) and (22) ({(c;)=4a+0(a®)). As we will show
elsewhere its dispersion can be also obtained in the same
way, 0%(c;)=2a>+O(a’Ina). Finally, the marginal case B
is similar to the weak case with logarithmic corrections and
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we have x>~bys~ ?|Ins| ' +b,s?|lns| 32 The first coeffi-
cient is self-averaging but b, is sample dependent with a
zero mean value and a variance o2(b,)=16.

In summary, we have presented here a general method to
study self-averaging properties in the transport of particles
through random media. Our analysis of both DRW and SRW
shows rigorously that when the behavior of a quantity is
normal its long time behavior is sample independent. On the
contrary, in anomalous diffusion phases the self-averaging
property is not satisfied. The method introduced in this Rapid
Communication can easily be applied to other one-
dimensional problems and it can also be extended to more
dimensions. Some of these applications will be presented
elsewhere.
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